
N90-20671

DISTRIBUTED EARTH MODEL / ORBITER SIMULATION

Erik Geisler / IBM

Scott McClanahan / Ford Aerospace

Dr. Gary Smith / IBM

NASA Johnson Space Center

Workstation Prototype Lab

FS-7

Houston, Texas 77058

ABSTRACT

Distributed Earth Model / Orbiter Simulation

(DEMOS) is a network based application

developed for the UNIX environment that visu-

ally monitors or simulates the Earth and any

number of orbiting vehicles. Its purpose is

to provide Mission Control Center (MCC)

flight controllers with a visually accurate

three dimensional (3D) model of the Earth,

Sun, Moon, and orbiters, driven by real time

or simulated data. The project incorporates

a graphical user interface, 3D modelling

employing state-of-the art hardware, and

simulation of orbital mechanics in a

networked / distributed environment. The

user interface is based on the X Window Sys-

tem and the X-Ray toolbox. The 3D modelling

utilizes the Programmer's Hierarchical

Interactive Graphics System (PHIGS) standard

and Raster Technologies hardware for render-

ing / display performance. The simulation of

orbiting vehicles uses two methods of vector

propagation implemented with standard UNIX /

C for portability. Each part is a distinct

process that can run on separate nodes of a

network, exploiting each node's unique

hardware capabilities. The client / server

communication architecture of the application

can be reused for a variety of distributed

applications.

I. INTRODUCTION

This paper describes a graphics project under

development by the NASA / Johnson Space

Center (JSC) Workstation Prototype Lab (WPL)

staff that provides a scene generation tool

capable of maintaininQ and displaying a

realistic model of the Earth and various

orbiting objects. Display output may be used

to drive a large screen projector or closed

circuit TV. The four major components of the

application will be described. The first

section covers the architecture and communi-

cation between the different tasks. The

second section describes the user interface

that controls the system. The third section

is the model manager, which is the center of

the application that manipulates the 3D

graphics and coordinates the simulations.

The final section discusses the simulation

task, which generates positional and attitude

data representing an orbiting vehicle.

2. BODY

2.1. Architecture

DEMOS is based on a server/client model. The

model manager is the focal point of the sys-

tem. It performs the server function, ser-

vicing requests from the client processes.

The clients include one user interface task

and several simulation tasks. There is one

simulation task per orbiting vehicle, and

several vehicles may be viewed simultane-

ously.

The processes that comprise DEMOS are Local

Area Network (LAN) transparent, as a result,

each task may run on different network nodes.

Communication between the tasks is accom-

plished by passing packets via UNIX sockets,

which is compatible across multiple vendor

workstations. The sockets also work within a

single workstation, so full flexibility is

provided in defining the topology of the

application. Configuration of each task's

node can be defined by the user at run time.

The application may be distributed over mul-

tiple workstations to off-load computations

to machines more appropriate for that type of

work. The model manager must run on the

workstation containing the target graphics

hardware. Eliminating nearly all other

processes on the model manager workstation,

allows it to run at real time priorities,

thus allowing the 3D image updates to occur

more frequently. The graphical user inter-

face is dependent on the X Server, graphics

hardware, keyboard, and mouse, but it does

not use much CPU, so a low end workstation is

acceptable. The simulation tasks are CPU

bound and profit from floating point

hardware.

Figure 1 shows the system configuration of

DEMOS. Circular components denote system

processes. Double ended arrows represent

communication between processes. Rectangluar

boxes represent external data files. The

"Config Data" contains system initialization

information. The "Model Defs" contain exter-

nal scene descriptions and model geometry.

143 ORIGINAL PAGE IS

OF POOR QUALITY



These files are read by the model manager in

order to construct a hierarchical scene. The

user interface process is started first and

employs the services of the X server. Upon

successful initialization, the user interface

process starts the model manager. The model

manager in turn starts the Sun, the Moon, and

any number of orbiting vehicle simulations.

The system is shutdown in reverse order. The

model manager terminates all simulation

processes before terminating itself. The

user interface is shutdown immediately upon a

user request.

I ConfigData

I ModelDefs

Figure 1 - DEMOS System Configuration

Each task in DEMOS uses the same packet send

and receive subsystem. This prevents any

task from blocking for I/O on socket opera-

tions. Since many packets may be sent at

once, a queue holds the packets that the UNIX

kernel cannot keep internally. The socket

"streams" protocol is used to guarantee

packet delivery and ordering. The queuing

system also handles sending a partial packet.

These packets can vary in size. At the

receive end, the same subsystem isolates the

application from incomplete packets by build-

ing and returning only complete packets.

2.2. User Interface

The user interface task provides the single

point of contact between a user and DEMOS.

It provides full control of DEMOS, including

the ability to initiate and shutdown the sys-

tem. The user interface does not have to be

present after initializing DEMOS. The user

can logoff the user interface and DEMOS will

continue running. The system allows only one

user interface to run at a time to ensure

system consistency. System advisories are

normally sent to the user interface, but if

it is not present, then they are queued by

the model manager until a user logs on.

There are two versions of the user interface

for DEMOS - a graphical version, "xruif", and

a command line interpreter version, "shuif".

Xruif is based on the X Window System, so it

is dependent on a graphics terminal con-

trolled by an X server. On the other hand,

shuif will run on any ASCII terminal, allow-

ing more portability. The only difference

between shuif and xruif is the user interac-

tion. The low level areas of the two user

interfaces share the same services.

2.2.1. Shuif

The command line interpreter version of the

user interface is similar to the UNIX shell

("sh" or "csh") . It prompts for input from

the keyboard, parses the input line for the

command, and then executes the command.

A generic command line interpreter subsystem

was created in the process of developing

shuif. The first word of the input line is

taken as the command name with the rest of

the line being the arguments to the command.

The con_nand definitions, which are table

driven, include the invocation, or callback,

subroutine, as well as help information. The

command line interpreter can be recursively
nested to simulate submenus of commands.

This subsystem also uses the "select" system

call to block for I/O pending on any file

descriptor. Each file descriptor has a

corresponding callback routine which is

called to process its data. I/O.

"Autotype" is a feature that allows shuif to

run a complete user interface session in

batch mode, reading commands from a file and

echoing them to the screen as if they were

typed by the user. This is useful for hands

free demonstrations and test scripts. A

"wait" command is included in shuif that

suspends the user interface until an event

occurs, such as waiting for the list of

models to arrive before requesting a model to

be loaded. Autotype files use the wait com-

mand to synchronize events within the system.

"Playback" is similar to autotype in that it

allows the user working interactively with

shuif to run a sequence of commands from a

file. This is a convenience feature for

redundant commands and to modularize opera-

tions involving a series of commands. Play-

back can also be invoked from an autotype

file.

To complement the autotype and playback

features, shuif can record (to a file) every-

thing typed in by the user. Recording can be

turned on or off at any time. Recording to

an existing file appends the new con_nands.

Shuif provides commands for entering data for
the simulation and base date values. When a

simulation is started or the base date is

set, the user has the option of using a data

file or typing in all of the values. The

data files can be created by a separate com-

mand that prompts the user for the values.

All data files are validated when they are

created and read.

144



2.2.2. Xruif

Xruif, the graphical user interface to DEMOS,

is based on Xll Release 2. Since X is becom-

ing a windowing standard, X clients are

source code portable across many vendors'

workstations. Xruif uses the X-Ray toolbox

developed by Hewlett-Packard. The latest

version of X-Ray is from the Release 3 tape

of Xll from MIT. Xruif currently runs on a

Sun 3/60 with the MIT X server in either

monochrome or color.

The user interface style of xruif was not

intentionally based on any existing applica-

tion or style. It is based on the available

X-Ray editors.

Xruif is composed of a single window divided

into tiled panels. At the top is the title,

followed by the main menu, then a work area,

and an advisory panel at the bottom.

The work area is a reserved space where tran-

sient panels reside. All of the work area

panels are the same size, even though their

contents may not fill the panel. The work

area panels are composed of a selection

lists, (such as models, viewport configura-,

tions, viewport mappings and eyes, active

vehicles, and the on-line help screens), or

data entry screens for the base date and

simulation values. These panels are

activated by a main menu selection, and only

one panel can occupy the work area at a time.

When no panels are visible in the work area,

a simple panel with the "work area" label in

the center is left visible.

The user interface gadgets in X-Ray are

called editors. Many of the X-Ray editors

are used in xruif. The title bar editor con-

tains a graphically offset single line of

text with a selection box at each end. Each

panel in xruif contains a title bar with a

selection box containing a question mark for

displaying help information on that panel.

The push button editor is a matrix of oval

buttons containing a label that is selected

with the mouse. The main menu is comprised

of push buttons. The list editor is a rec-

tangle with an optional title bar at the top,

optional scroll bars on the side, and a list

of text that can be scrolled and selected

(highlighted) with the mouse. This editor is

used extensively in xruif. The text editor

is a data entry field with a prompt to one

side. It is used to enter simulation and

base date values. A message box editor pops

up a window containing an icon, some text,

and some push buttons. It is used to force

answering "Are you sure?" questions. A group

box editor is simply a rectangle with a label

at the top to surround a group of editors and

visually associate them.

The title panel also uses the static raster

editor to display pixmaps, such as the NASA

logo, the WPL logo, and the DEMOS icon. The

DEMOS icon is also used to represent the

xruif window when it is closed.

There are several advantages to using

separate panels. First, it modularizes each

component of the user interface. Any panel

can easily be modified and rearranged without

affecting the other panels. Second, the X

window events "entry" and "leave" are used to

determine when the pointer goes into or out

of a panel. This allows each panel to do its

own input processing instead of having to

handle all inputs in one routine. Third,

each panel can size and create its own edi-

tors. Finally, panels can be redisplayed

independently, each handling its own "expose"

events.

Xruif employs an on-line help facility for

information on each panel. The title bar of

each panel has a help icon, which, when

selected, brings up the help panel in the

work area, overlaying the previous panel.

When the help panel is terminated, the previ-

ous panel is restored. The help panel con-

tains scrollable help text, plus a help index

listing all help screens. Selection of a

help index item displays that panel's help

screen. The help screens are loaded at ini-

tialization from ASCII text files. For

DEMOS, help screens were formatted by the

"nroff" utility and can be easily customized

by the user.

2.3. Model Manager

The model manager is responsible for servic-

ing user interface requests, loading data

models, managing simulations, and generating

accurate visual displays of a modeled scene.

Its implementation employs the PHIGS stan-

dard, as well as PHIGS+ extensions for light-

ing and shading. The Raster Technologies

PHIGS+ subsystem off-loads a number of

graphic functions including model hierarchy

management, traversal, and rendering/display.

Many functions are performed in firmware.

Using this graphics architecture, the model

manager is able to concentrate on a variety

of control functions associated with managing

multiple, asynchronous simulations. The

model manager is composed of three major ele-

ments: Scene Construction, Simulation Manage-

ment, and View Generation.

2.3.1. Scene Construction

After communications have been established

with the user interface task, the model

manager begins by constructing an in-memory

tree representation of a selected scene

hierarchy. A user selects a scene by choos-

ing a top-level description file. The model

manager reads this verb-based description

file in order to build an internal represen-

tation of the scene. Description files may

reference other description files. In this

manner, a complex external model hierarchy

may be defined. The model manager will

recursively read these files until the entire

scene tree is built. Using this technique,

generic scenes may be developed and processed

by a general modelling subsystem.

145

ORIGINAL PAGE iS

OF POOR QUALITY



Besides model hierarchy construction,

description files provide additional informa-

tion which is attached to the model's

geometric definition. This separation of

model geometry and model attributes allows

models to be tailored for rendering perfor-

mance versus realism. Each file has a speci-

fied type, which determines how the remaining

commands are to be interpreted. A variety of

types are currently supported: 'model',

'eye', 'camera', 'scene', 'light', and

'ghost'.

A 'model' description file provides the fol-

lowing information: the model units, initial

placement, display options (polygon, vector,

polyline), shading method (flat, Gouraud),

surface properties, color model, hidden-

line/hidden-surface options and an optional

reference to a data file containing the

actual geometric model. Model attributes are

inherited from parent models. Typically, a

top level model node provides overall model

information and attributes while children

nodes reference individual submodels and

define how they are geometrically related to

their parent.

An 'eye' or 'camera' description file pro-

vides the definition of viewing parameters

for a single viewpoint. The only distinction

made between eyes and cameras is that cameras

represent physical optical devices while eyes

define a synthetic viewpoint. Both are

treated as submodels, positioned relative to

their parent node. By attaching eyes and

cameras to a geometric model, a wide variety

of views can be supported. This viewing

mechanism forms a major element within the

model manager. A majority of the model

manager's computational effort is spent main-

taining selected views. The following infor-

mation can be defined for an eye or camera:

camera position, camera orientation, perspec-

tive reference point, view distances (front,

view, back), projection type (parallel, per-

spective), and viewing window parameters.

A 'scene" description file defines global

scene characteristics. Specifically, it pro-

vides the following information: scene light-

ing method (ambient, diffuse, specular,

none), true or pseudo color display indica-

tor, background screen color, viewport edge

characteristics, viewport titles flag, ini-

tial viewport definition(s) and background

colors, screen aspect ratio, Normalized Pro-

jection Coordinate the (NPC) window and Dev-

ice Coordinate (DC) viewport in which NPC

window will be mapped. Many of the developed

scenes refer to a common scene node since

this information rarely changes. Changing

the scene lighting and the number of

viewports can drastically affect scene

display rates. The DC viewport provides the

capability to place the graphic display into

a selected portion of the screen. This

becomes important when the RGB signal is con-

verted to video via converter boxes such as

Genlock or RGB Technologies VideoLink.

A 'light' description file defines a single

light source. Ambient, infinite, point, and

spot light types are supported. Depending on

the light type, a number of lighting charac-

teristics may be defined, such as color,

location, direction, concentration exponent,

and cone of influence. Adding additional

lights seems to have only a minimal computa-

tional effect on the overall rendering pro-

cess. DEMOS currently employs a single

infinite light source - the Sun. Additional

lights might be added to have the orbiter

always visible to the user even though it is

positioned on the dark side of the planet.

A 'ghost' description file defines an object

which assumes and maintains a position rela-

tive to its in_nediate parent node. As its

name implies, a ghost object is an invisible

object which cloaks another object. Ghost

objects are semi-attached to their parent.

This is, they only receive positional

updates; attitude transformations are not

applied. These type of objects are typically

used to establish a set of viewpoints associ-

ated with an orbiting vehcile. Since these

viewpoints only accept positional updates,

and therefore move along with an object, they

are capable of viewing rotational (attitude)

changes to the object in which they are con-

nected. This feature provides a flexible

viewing mechanism and is used to support

visual verification of spacecraft orienta-

tion, as well as, Earth rotations from a

point in space.

During description file processing and

hierarchical scene tree construction, a set

of linear lookup tables are developed in

order to minimize the model editing process.

Each table entry contains a unique object

name followed by a tree node pointer. The

use of this pointer eliminates unnecessary

tree traversals by the model manager when

updating an object's position and attitude.

In addition, the PHIGS structure ID is

obtained from the tree node, and is used to

perform PHIGS editing. The reason in-memory

scene tree structures are edited along with

the PHIGS structures is to facilitate the

formation of a particular view from an eye or

camera. The PHIGS specification allows

structure inquiries to obtain this informa-

tion; however, the PHIGS implementation

currently used does not support this opera-

tion. Combining an in-memory tree structure

and the sorted lookup tables provides an

efficient framework for model editing. The

linear table provides efficient model search-

ing while the in-memory tree structure pro-

vides the necessary model hierarchy.

After the in-memory scene tree has been con-

structed, it is loaded into the PHIGS Central

Structure Store (CSS) . The CSS provides a

central database where graphics information

is stored and edited. In order to construct

the PHIGS database in a contiguous manner,

the model manager recursively traverses the

in-memory scene tree and loads each model and

light node into the CSS. If a child node

representing a model, ghost, or light is

referenced within the current node, a PHIGS

structure execution command is issued to link

146



this child node to its parent. Eye and cam-

era nodes are ignored during this PHIGS load-

ing process and are managed separately.

2.3.2. Simulation Management

The processing architecture of the model

manager is based on a state machine approach

employing time and events. To manage multi-

ple, asynchronous simulations, the model

manager must maintain its own internal clock.

This clock is established by the user issuing

the system start time command. Once the time

is set, the model manager begins propagating

it by a discrete unit. In addition, the

model manager automatically spawns a Sun and

Moon simulation task on previously defined

workstations. The user also determines how

quickly time should propagate and the amount

of Earth rotation per display update. This

clock is used to synchronize all events

within the model manager.

Simulations are initiated upon reciept of a

user interface request. The model manager

retains the specified simulation information

within an internal state structure. These

structures hold and maintain information nec-

cessary for communications, groundtrack

requests, and position and attitude requests.

States transition from one state to another

due to an occurrence of an event. For exam-

ple, a simulation is not started until the

internal clock is equal to or greater than

the simulation starting time. Once started,

the simulation, or monitoring element, tran-

sitions from the 'wait to start' state to the

'has started' state. Typically, simulations

enter a cyclic state where the model manager

continually requests their next position for

the current time of interest (e.g., the

internal system time). Since the model

manager makes all the requests, it controls

the rate at which simulation elements

respond. Simulation or monitoring elements

never send unsolicited information. This

greatly simplifies their control. In effect,

simulation management is handled via a master

/ slave approach rather than with the client

/ server relationship held with the user

interface. This control technique also

ensures the model manager is never inundated

with data from clients' simulations.

The notion of a time node was developed to

maintain an accurate visual display of multi-

ple moving objects. When time is propagated,

a node is allocated and placed on the end of

a time list. For each time unit, a request

is generated for each active simulation ele-

ment in order to update its position, atti-

tude, or light direction. These requests are

attached to the current time node. When the

simulation element responds with appropriate

data, the corresponding model is updated to

reflect this update, and the request is

removed from the appropriate time node. Once

all requests for a particular time node have

been removed, the time node is freed and the

scene is in a correct state for the next

display. If all requests for a time node

have been removed, and an earlier time node

still contains outstanding requests, then

2.3.3. View Generation

The model manager spends the majority of its

processing maintaining accurate visual

representations of the scene being modeled.

It supports a wide array of scene viewing

capabilities. Under user control, the graph-

ics screen may be partitioned into a number

of viewports. Each viewport is treated as an

empty slot in which an eye or camera may be

assigned. Only one view (eye or camera) may

be assigned to a particular viewport at any

one time; however, a view may be assigned to

multiple viewports. Viewports have a back-

ground color, and are outlined to indicate

their screen coverage. In addition,

viewports have the property of visibility.

The user may wish to temporarily turn off a

particular viewport to improve display rates

or to ignore uninteresting views. Viewports

which have an assigned eye or camera may have

a small title displayed to help identify the

particular view. These titles are extracted

from the corresponding eye or camera nodes

from within the scene tree.

During the scene tree construction phase, a

default viewport configuration file and a

default view assignment file are read to pro-

vide an initial viewing framework. This

framework is used to view the scene prior to

starting simulations. Once a scene is

loaded, the user interface requests a list of

all available viewport configurations and

their current view assignments. Given this

information, the user may freely assign views

to viewports, toggle viewport visibility, or

select another viewport configuration.

The model manager constructs a view for a

given viewport in the following manner.

First, a view is assigned to a particular

viewport by copying the specified viewing

parameters to the desired viewport data

structure. A view mapping matrix is then

computed for this viewport. The next step

involves the actual view generation, given an

arbitrary viewing position in modelling coor-

dinates. Since the eye coordinate system is

fixed, it is necessary to transform the world

coordinate system into this eye coordinate

system. The scene tree contains all informa-

tion concerning model hierarchy, and is

therefore used to compute thls transformation

by traversing the scene tree backward from

the eye or camera node to the tree's root

node. Initially, the eye's orientation is

set to the identity matrix. This matrix is

then transformed by applying inverse

transformations while traversing up the tree.

Once the root node is reached, a final orien-

tation matrix has been formed, and it is then

associated with the corresponding viewport.

The viewing computation is then completed by

loadinq the newly computed viewing represen-

these earlier time nodes are destroyed -

leaving only the latest information. By

employing time nodes and multiple requests

per time unit, the accuracy of the visual

display is ensured.

147



tation and allowing PHIGS to traverse the

hierarchical model contained in the CSS. In

order to minimize the view construction, only

the assigned, visible, viewports are com-

puted.

2.4. Simulation Components

The simulation tasks provide the model

manager with the necessary data to maintain

an accurate representation of the Sun, the

Moon, any number of orbiting vehicles, and

the orientation of the Earth within the M50

coordinate system (the basic JSC inertial

coordinate system).

Currently, three types of simulation tasks

are supported: a Sun simulation, a Moon

simulation, and an orbiting vehicle simula-

tion. Simulation tasks are started by the

model manager via a remote procedure call.

They are typically deployed on workstations

providing floating point hardware. Once a

simulation has successfully started and has

established communication with the model

manager, it is sent a packet containing all

information required to begin processing.

A simulation component of DEMOS consists of

up to five functional elements:

I) Compute the Rotation-Nutation-

Precession (RNP) matrix. The RNP

matrix relates the M50 coordinate

system to a coordinate system fixed

to the Earth.

2) Generate from one to ten orbits worth

of ground tracks for the orbiting

vehicle

3) Determine the position over the Earth

of the orbiting vehicle.

4) Determine the attitude of the orbit-

ing vehicle axes relative to an

Earth-fixed coordinate system so that

the vehicle maintains a pitch, roll,

and yaw of zero degrees relative to

the UVW local orbital reference frame

(U is a unit vector in the direction

of the radius vector, W is a unit

vector in the direction of the angu-

lar momentum vector, and V is the

unit vector which forms a right-

handed system). (Note that the body

axis system for this application has

the x-axis out the nose of the

orbiter, the z-axis out the top of

the orbiter, and the y-axis out the

left wing).

5) Determine the location of the Sun and

the Moon.

2.4.1. Computation of the RNP Matrix [12]

The fundamental transformation matrix for the

simulation component is the RNP matrix. It

incorporates all of the precession, nutation

and rotation changes that have affected the

orientation of the Earth in inertial space

since 1950. It relates the orientation of an

axis system fixed to the Earth relative to

the M50 coordinate system. The user inter-

face task provides the base-time-of-interest

values. These include: the year, month, day,

hour, minute and second. The time difference

between Ephemeris Time and Universal Time

Corrected is also provided.

Once the input base time has been obtained,

the computation of the RNP matrix proceeds as

follows:

1 Calculate the Julian Universal Date

and the Julian Ephemeris Date.

2 Compute the three precession angles.

3 Compute the precession transformation

matrix, P.

4 Compute the nutation angles.

5 Compute the nutation in longitude.

6 Compute the nutation in obliquity.

7 Compute the nutation transformation

matrix, N.

8) Compute the rotation transformation

matrix, R, which orients the X-axis

(through Greenwich) for the base time

of interest.

9) Compute the RNP matrix by multiplying

the R, N, and P matrices together.

10) Perform the z-axis rotation to rotate

the RNP matrix back to December 31, 0

hours, 0 minutes, 0 seconds of the

previous year.

This fundamental RNP matrix is employed to

transform an M50 vector (for a given time)

into an Earth-fixed vector. This is

extremely important for the generation of

ground tracks or for positioning a vehicle

over the surface of the Earth.

2.4.2. Generation of Ground Tracks

The user interface task provides the number

of orbits worth of ground tracks that are to

be displayed. This number is passed to the

ground track simulation element where 180

sets of Earth-fixed latitude and longitude

points are generated for each orbit. These

points are passed to the model manager which

then displays the ground tracks on the 3D

Earth Model.

Each Earth-fixed latitude and longitude point

is computed as follows:

I) Propagate the state vector to the

particular time along the ground

track (the delta time between propa-

gation steps is the period of the

orbit divided by 180 points).

2) Calculate an updated RNP matrix using

the time of the state vector.

3) Transform the propagated M50 position

vector into and Earth-fixed position

vector using the RNP matrix.

4) Calculate the Earth-fixed latitude

and longitude from the Earth-fixed

position vector.

The ground track simulation element either

uses a two-body propagation method or a modi-

fied Analytic Ephemeris Generator (AEG) pro-

pagation method to generat 9 the state vectors

from which the latitude and longitude points

are computed. The user specifies which pro-

pagation method is desired when the initial

state vector is entered.

148



2.4.3. Computation of Position

The user interface provides values for the

initial simulation. The object could be the

shuttle orbiter, the Space Station, or any

other satellite of the Earth. The user

decides the choice of units (e.g. feet,

meters, or Earth radii) and the initial time

of the 'state'. This 'state' can be entered

either as M50 position and velocity vectors

or as M50 Keplerian orbital elements (semi-

major axis, eccentricity, inclination, longi-

tude of the ascending node, argument of peri-

gee and mean anomaly). Finally, the choice

of propagation method is entered. This can

be either two-body or AEG propagation. When

the simulation element is initialized, addi-

tional orbital parameters are computed which

will be utilized in the propagation of the

position and velocity. In the case of two-

body propagation [6], the additional parame-

ters include unit vectors in the two-body

orbital plane. An AEG propagation is ini-

tialized by computing a set of 'invariant'

elements which can be used to propagate posi-

tion and velocity including the effects of

the J2, J3, and J4 gravitational harmonics of

the Earth. The AEG propagation method is a

scaled down version of Edgar Lineberry's Ana-

lytic Ephemeris Generator [8] which is used

in the MCC to support missions.. The scaled

down version computes the effects of the

short-period terms on the orbital elements.

The version implemented for DEMOS does not

include the calculation of drag effects.

When a time is given to the position computa-

tion element, Get__position, the position and

velocity are propagated to that time. This

time may be sent to Get_position either by

the ground track computation element or by

the model manager. Once the position and

velocity are propagated, a series of coordi-
nate transformation routines rotate these

vectors into an Earth-fixed coordinate sys-

tem. The Earth-fixed position vector is then

used to calculate the Earth-fixed latitude

and longitude.

2.4.4. Computation of Attitude [9]

After the position is obtained, the pitch,

roll, and yaw attitude angles of the orbiting

vehicle relative to the Earth-fixed reference

frame are computed to maintain the vehicle

attitude of its body axes relative to the UVW

local orbital reference frame. This "UVW

hold" attitude causes the shuttle to appear

on the graphics screen with its nose parallel

to the ground tracks and the plane of the

wings perpendicular to the radius vector.

This allows the payload bay doors to be visi-

ble to a viewer looking down on the shuttle

as it orbits the Earth.

2.4.5. Computation of the Sun Position

[2,3]

The model manager has the capability to pro-

vide lighting over the surface of the Earth,

by knowing where the Sun is relative to the

Earth-fixed coordinate system. The Sun posi-

tion computation element, Get sun, calculates

the Earth-fixed position of the Sun by the

following steps:

i) Calculate the precession angles and

the precession matrix P, for the time

of interest.

2) Calculate the Mean Longitude of Peri-

gee for the Sun relative to the Mean

Equinox of Date.

3) Calculate the Mean Anomaly for the

Sun relative to the Mean Equinox of

Date.

4) Calculate the eccentricity of the

Earth's orbit around the Sun.

5) Solve Kepler's equation for the

Eccentric Anomaly of the Sun.

6) Calculate the True Anomaly of the

Sun.

7) Calculate the Mean Obliquity of the

Ecliptic.

8) Calculate the longitude of the Sun in

the Ecliptic plane.

9) Calculate the magnitude of the radius

vector from the Earth to the Sun.

10) Compute the position vector of the

Sun in Ecliptic coordinates.

ii) Apply the precession matrix, P, to

this Ecliptic vector to compute the

position vector for the Sun in M50

coordinates.

12) Rotate this M50 position vector using

the RNP matrix to Earth-fixed coordi-

nates and extract the Earth-fixed

latitude and longitude of the Sun.

Computation of the Moon Position

The model manager can move one of its

viewpoints sufficiently far from the Earth-

Moon system so that both the Earth and the

Moon are visible in the same view. If the

system time is accelerated the Moon can be

seen to orbit the Earth.

The Moon position computation element,

Get moon, calculates the Earth-fixed position

of the Moon by the following steps:

i) Compute the precession angles and the

precession matrix, P.

2) Calculate the nutation angles.

3) Calculate the Ecliptic latitude,

Ecliptic longitude, and parallax of

the Moon using Fourier Series Expan-

sions (sine and cosine terms) of com-

binations of the nutation angles.

4) Compute the magnitude of the radius

vector from the Earth to the Moon.

5 Compute the position vector of the

Moon in the Ecliptic plane.

6 Rotate the Ecliptic position vector

into the M50 coordinate frame using

the precession matrix, P.

7 Rotate this M50 position vector using

the RNP matrix to Earth-fixed coordi-

nates and then extract the Earth-

fixed latitude and longitude of the

Moon.

Eventually, the position, velocity and atti-

tude information for the orbiting vehicle

will be obtained over the LAN from the Mis-

sion Operations Computer (MOC) or Calibrated

Ancillary System (CAS). The internal units

for the simulation component have been kept

compatible with the Ground Based Space Sys-

149



tems (GBSS) internal units on the MOC to ease

this transition.

3. CONCLUSION

DEMOS is a successful implementation of 3D

modelling employing accurate simulations of

the Earth, Sun, Moon, and any number of

orbiting objects. It provides a visualiza-

tion tool which has the capability to simu-

late / monitor orbiting objects and to

display a realistic scene in an acceptable

time period. A flexible viewing system

allows flight controllers to view objects

from a variety of viewpoints. Vehicle cam-

eras and synthetic eyes may be defined to

inspect spacecraft activity from arbitrary

view positions. The distributed architecture

provides the framework for future application

extensions. Application software employs the

latest workstation standards, maximizing its

lifecycle while minimizing any rehosting

costs. Simulation techniques are implemented

from proven algorithms.

4. ACKNOWLEDGEMENTS

The authors wish to thank Randall Barnett of

Lincom Corporation for his PHIGS assistance

and software techniques. His optimized algo-

rithms improved view generation times consid-

erably. We would like to also thank the Mis-

sion Planning and Analysis Division (MPAD)

graphics lab for their generous supply of

high fidelity graphics models of various

spacecraft, which helped assimilate realistic

scenes.

5. REFERENCES

1. Computer Science Corporation, FLIGHT
DYNAMICS / SPACE TRANSPORTATION SYSTEM

3-D MONITOR SYSTEM RELEASE 2 SYSTEM

DESCRIPTION, CSC/SD-88/6066, Contract NAS

5-31500, Task Assignment 58 214, NASA

Goddard SFC, Greenbelt, Maryland, August

1988.

2. Escobal, P. R., METHODS OF ASTRODYNAMICS,

John Wiley & Sons, Inc., New York, 1968.

3. EXPLANATORY SUPPLEMENT TO THE ASTRONOMI-

CAL EPHEMERIS AND THE AMERICAN EPHEMERIS

AND NAUTICAL ALMANAC, H. M. Stationery

Office, London, 1961.

4. Foley, J. D., Van Dam, A., FUNDAMENTALS

OF INTERACTIVE COMPUTER GRAPHICS,

Addison-Wesley Publishing Company, Phi-

lippines, 1982.

5. Gettys, Jim, Newman, Ron, Scheifler,

Robert W., XLIB - C LANGUAGE X INTERFACE,

Massachusetts Institute of Technology,

Cambridge, MA, 1987.

6. HerrJck, Samuel, ASTRODYNAMICS, Volume I,

Van Nostrand Reinhold Company, London,

1971.

7. Hewlett-Packard Company, PROGRAMMING WITH

THE XRLIB USER INTERFACE TOOLBOX, Febru-

ary 1988.

8. Lineberry, Edgar, INVARIANT ORBITAL ELE-

MENTS FOR USE IN THE DESCRIPTION OF

MOTION ABOUT AN OBLATE EARTH, JSC Inter-

nal Note No. 74-FM-84, December 4, 1974.

9. MATHEMATICAL STANDARDS AND GUIDELINES,

IBM GBS Programmer's Guide, Section 6,

September i, 1976.

10. Mortenson, M. E., COMPUTER GRAPHICS: AN

INTRODUCTION TO THE MATHEMATICS AND

GEOMETRY, Industrial Press Inc, New York,

NY, 1989.

ll. O'Reilly and Associates, XLIB PROGRAM-

MING MANUAL FOR VERSION II RELEASE 2 OF

THE X WINDOW SYSTEM, Volume I, O'Reilly

and Associates, Newton, MA, April 1988.

12. Schulenberg, C. W., DESCRIPTION OF A

SELF CONTAINED SUBROUTINE WHICH ANALYTI-

CALLY GENERATES INTERPLANETARY COORDINATE

SYSTEM TRANSFORMATIONS REFERENCED TO THE

MEAN OF 1950.0 EPOCH, TRW Note 70-FMT-

853, Sept. 30, 1970.

150


